Clinical Enzymology
Enzymes

- Biological catalysis
- Very efficient – can increase reaction rates at the order of $\times 10$
- Most of the enzymes are proteins - so liable to denaturation
- Specific to substrates
- Partly specific to tissues
Measurement of serum enzymes

- Diagnostic enzymology
- Enzymes are normally **intracellular** and LOW concentration in blood
- Enzyme release (leakage) in the blood indicates cell damage (cell death, hypoxia, intracellular toxicity)
- Quantitative measure of cell/tissue damage
- **Mostly Organ specific** - Not All
- Most enzymes are present in most cells----differing amounts
Information from enzymes measurements in serum

- Presence of disease
- Organs involved
- Aetiology /nature of disease
- Extent of disease - more damaged cells - more leaked enzymes in blood
Isoenzymes

- Catalyse same reactions but are formed from structurally different polypeptides.
- They perform the same catalytic function.
- Different isoenzymes may arise from different tissues and their specific detection may give clues to the site of pathology.
- Various isoenzymes of an enzyme can differ in three major ways:
 - enzymatic properties
 - physical properties (e.g. heat stability)
 - biochemical properties such as amino acid composition and immunological reactivities.
Measurement of enzyme activity

- Enzyme activity is expressed in International unit (IU)
 It corresponds to the amount of enzymes that catalyzes the conversion of one micromole (µmol) of substrate to product per minute
Enzymes routinely measured

<table>
<thead>
<tr>
<th>NAME OF THE ENZYME</th>
<th>PRESENT IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartate Amino transferase (AST)</td>
<td>Heart and Liver</td>
</tr>
<tr>
<td>Serum glutamate-oxaloacetate transaminase (SGOT)</td>
<td></td>
</tr>
<tr>
<td>Alanine Amino transferase (ALT)</td>
<td>Heart and Liver</td>
</tr>
<tr>
<td>Serum glutamate-pyruvate transaminase (SGPT)</td>
<td></td>
</tr>
<tr>
<td>Alkaline Phosphatase (ALP)</td>
<td>Bone, intestine and other tissues</td>
</tr>
<tr>
<td>Acid Phosphatase (ACP)</td>
<td>Prostate</td>
</tr>
<tr>
<td>γ glutamyl Transferase (γ GT)</td>
<td>Liver</td>
</tr>
<tr>
<td>Creatine kinase (CK)</td>
<td>Muscle Including cardiac muscle</td>
</tr>
<tr>
<td>Lactate Dehydrogenase (LDH)</td>
<td>Heart, liver, muscle, RBC</td>
</tr>
<tr>
<td>α Amylase</td>
<td>Pancreas</td>
</tr>
</tbody>
</table>
LACTATE DEHYDROGENASE (LDH)

Pyruvate \leftrightarrow Lactate (anaerobic glycolysis)

- LDH is elevated in myocardial infarction, blood disorders
- It is a tetrameric protein and made of **two types of subunits** namely H = Heart, M = skeletal muscle
- It exists as **5 different isoenzymes** with various combinations of H and M subunits
<table>
<thead>
<tr>
<th>Isoenzyme name</th>
<th>Composition</th>
<th>Composition</th>
<th>Present in</th>
<th>Elevated in</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDH1</td>
<td>(H₄)</td>
<td>HHHH</td>
<td>Myocardium, RBC</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>LDH2</td>
<td>(H₃M₁)</td>
<td>HHHM</td>
<td>Myocardium, RBC</td>
<td></td>
</tr>
<tr>
<td>LDH3</td>
<td>(H₂M₂)</td>
<td>HHMM</td>
<td>Kidney, Skeletal muscle</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>LDH4</td>
<td>(H₁M₃)</td>
<td>HMMM</td>
<td>Kidney, Skeletal muscle</td>
<td></td>
</tr>
<tr>
<td>LDH5</td>
<td>(M₄)</td>
<td>MMMM</td>
<td>Skeletal muscle, Liver</td>
<td>Skeletal muscle and liver diseases</td>
</tr>
</tbody>
</table>
CREATINE KINASE (CK)

Creatine + ATP \(\rightleftharpoons\) phosphocreatine + ADP

(Phosphocreatine – serves as energy reserve during muscle contraction)

- Creatine kinase is a dimer made of 2 monomers
- **Skeletal muscle** contains **M subunit**, **Brain** contains **B subunits**
- CK has three different isoenzymes.
<table>
<thead>
<tr>
<th>Isoenzyme name</th>
<th>Composition</th>
<th>Present in</th>
<th>Elevated in</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK-1</td>
<td>BB</td>
<td>Brain</td>
<td>CNS diseases</td>
</tr>
<tr>
<td>CK-2</td>
<td>MB</td>
<td>Myocardium / Heart</td>
<td>Acute myocardial infarction</td>
</tr>
<tr>
<td>CK-3</td>
<td>MM</td>
<td>Skeletal muscle, Myocardium</td>
<td></td>
</tr>
</tbody>
</table>
ALANINE TRANSAMINASE (ALT) AND ASPARTATE TRANSAMINASE (AST)

\[\alpha\text{- Oxoglutarate} + \text{L-aspartate} \quad \text{Aspartate aminotransferase (AST)} \quad \text{L-glutamate} + \text{oxaloacetate} \]

\[\alpha\text{- Oxoglutarate} + \text{L-alanine} \quad \text{Alanine aminotransferase (ALT)} \quad \text{L-glutamate} + \text{pyruvate} \]

- **the most abundantly present in the liver**
- Measurement of these transaminases is useful for the diagnosis of liver diseases
- In viral hepatitis the enzyme levels are increased 20-50 times above the upper limit of the normal range
- **Alanine transaminase (ALT) increase** is specific for liver damage involving hepatocellular damage
- **Aspartate transaminase (AST) is moderately increased** in Muscular dystrophy and acute myocardial infarction
ALKALINE PHOSPHATASE (ALP)

- Widely distributed throughout the body
- **High levels** are seen in liver, bone, placenta and intestine and useful to assess hepatobiliary and bone diseases
- In hepatobiliary obstruction, hepatocytes lining the biliary ducts induces the ALP synthesis.
- High levels of ALP is indicative of extrahepatic obstruction rather than intrahepatic obstruction
- **In bones**, the enzyme is derived from osteoblasts. Hence increased in bone diseases like rickets, osteomalacia, neoplastic diseases with bone metastases and healing fractures
ACID PHOSPHATASE (ACP)

- Is a group of enzymes that have **maximal activity at pH 5.0-6.0**
- It is present in prostate gland, liver, spleen and RBC.
- The **main source of ACP** is prostate gland and so can be used as a marker for prostate disease.

AMYLASE

- Is the digestive enzymes from the pancreas and salivary glands to digest complex carbohydrates.
- Elevated in acute pancreatitis.
- It is used as a marker to detect acute pancreatitis AND appendicitis.
γ glutamyltransferase (γ GT)

- It is involved in aminoacid transport across the membranes.
- Found mainly in biliary ducts of the liver, kidney and pancreas.
- Enzyme activity is induced by a number of drugs and in particular alcohol.
- γ-GT increased in liver diseases especially in obstructive jaundice.
- γ-GT levels are used as a marker of alcohol induced liver disease and in liver cirrhosis.
<table>
<thead>
<tr>
<th>NAME OF THE ENZYME</th>
<th>Conditions in which level of activity in serum is elevated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartate Amino transferase (AST)</td>
<td>Myocardial infarction, Liver disease especially with liver cell damage</td>
</tr>
<tr>
<td>Serum glutamate-oxaloacetate transaminase (SGOT)</td>
<td></td>
</tr>
<tr>
<td>Alanine Amino transferase (ALT)</td>
<td>Liver disease especially with liver cell damage</td>
</tr>
<tr>
<td>Serum glutamate-pyruvate transaminase (SGPT)</td>
<td></td>
</tr>
<tr>
<td>Alkaline Phosphatase (ALP)</td>
<td>Liver disease- biliary obstruction, Osteoblastic bone disease-rickets</td>
</tr>
<tr>
<td>Acid Phosphatase (ACP)</td>
<td>Prostatic carcinoma</td>
</tr>
<tr>
<td>(\gamma) glutamyl Transferase ((\gamma) GT)</td>
<td>Liver disorder like liver cirrhosis</td>
</tr>
<tr>
<td>Creatine kinase (CK)</td>
<td>Myocardial infarction and skeletal muscle disease(muscular dystrophy)</td>
</tr>
<tr>
<td>Lactate Dehydrogenase (LDH)</td>
<td>Myocardial infarction, other diseases like liver disease.some blood diseases</td>
</tr>
<tr>
<td>(\alpha) Amylase</td>
<td>Acute pancreatitis</td>
</tr>
</tbody>
</table>
SUMMARY

- Enzymes are biological catalysts present in every cell of the body.
- An enzyme will act on a specific substrate yielding a product.
- An isoenzyme is a genetic variant produced largely within a specific tissue.
- Isoenzyme patterns can give information about organ-specific disease.
- Important enzymes in the investigation of heart disease are CK, LDH and AST.
- Important enzymes in the investigation of liver disease are AST, ALT, alkaline phosphatase and GGT.
- Creatine kinase has three isoenzymes: CK-MM, CK-MB and CK-BB.
- LDH has five isoenzymes.
- Alkaline phosphatase can be used in the investigation of liver and bone disease.
- Increased levels of acid phosphatase are found in prostate cancer.
- GGT is induced by alcohol and is useful in monitoring alcohol abuse.
- Enzyme measurements should be performed using zero order kinetics, i.e. using excess substrate.
- Determinations of enzyme activity can be performed using an end-point or kinetic method.
ENZYMES IN THERAPY
• Substitution of missing production of digestive enzymes – digestive enzymes – pepsin trypsin…

• Removal of deposits of death tissue or fibrin (e.g. in lungs, eyes),

• treatment of skin defects – proteinases, nucleases, collagenase

• Acceleration of fibrinolysis in lungs embolization (activation of plasmin and plasminogen) – streptokinase, urokinase